Elementos, isótopos e iones

La primera definición de elemento químico se debe al gran Antoine Laurent de Lavoisier (1743-1794), quien es considerado el padre de la Química moderna (pues la elevó a la categoría de actividad científica fundamentada en la investigación). En su Tratado elemental de química (1789) hace una clasificación de los elementos conocidos (un total de 32, incluyendo la luz y el calórico, la supuesta materia del fuego), entendiendo como tales las sustancias puras que no pueden descomponerse en otras más sencillas.

Unos años después, el científico inglés John Dalton asentó definitivamente la naturaleza atómica de la materia, entendiendo que los átomos de un mismo elemento eran siempre iguales entre sí y distintos a los de otros elementos. A simple vista, las diferencias entre elementos eran obvias: estado físico, color, brillo, olor, sabor… Incluso había algunas pautas para identificarlos por su comportamiento químico, pero ¿qué distinguía a un elemento de otro a nivel atómico?

Con el descubrimiento de las leyes ponderales, se hicieron las primeras clasificaciones de los elementos en función de sus masas atómicas y se comprobó que se podían ordenar de tal manera que formaban grupos de elementos con propiedades análogas. De este modo surgió la tabla periódica de los elementos, que se ha ido perfeccionando y completando con el tiempo. Esto fue posible gracias a una serie de científicos, como Thomson, Rutherford o Chadwick, que, a finales del siglo XIX y principios del siglo XX, descubrieron las tres partículas elementales que constituyen el átomo: el protón y el neutrón, que concentran casi toda la masa del átomo en una pequeña región central llamada núcleo; y el electrón, de masa insignificante (en comparación con la del protón o el neutrón) y en continuo movimiento alrededor del núcleo a gran distancia de él. Según esto, la masa de un átomo se puede considerar que coincide con la de su núcleo y, en consecuencia, es en el núcleo donde radica la diferencia entre átomos, es decir, entre unos elementos y otros.

Número atómico y número másico

Dado que la masa de un átomo es, básicamente, la masa de su núcleo, y este está formado por protones y neutrones, se define:

Número másico: es el número de protones y de neutrones de un átomo.

El número de neutrones puede variar entre átomos de un mismo elemento, por lo que definimos:

Número atómico: es el número de protones de un átomo.

Por tanto, es el número atómico el que caracteriza y diferencia unos átomos de otros:

Los átomos de un mismo elemento poseen el mismo número atómico, es decir, el mismo número de protones.

Se conocen elementos con números atómicos comprendidos entre 1 y 118. El más pequeño es el hidrógeno, con un único protón, mientras que el elemento químico de mayor número atómico que está presente en la naturaleza es el americio, con 95 protones. Los de mayor número atómico han sido obtenidos artificialmente, mediante bombardeo de átomos de menor tamaño con partículas alfa.

Normalmente, el número atómico se simboliza con la letra Z y el número másico con la letra A, representándose con un subíndice y un superíndice, respectivamente, a la izquierda del símbolo químico al que corresponden:

Número-atómico-másico-simbolo-elemento

Isótopos

Hemos dicho que los átomos de un mismo elemento tienen el mismo número atómico (número de protones), pero no tienen por qué tener el mismo número másico (número de protones más neutrones). Por ello, definimos:

Isótopos: átomos de un mismo elemento (con el mismo número atómico) que difieren en el número de neutrones (distinto número másico).

La mayoría de los elementos químicos tienen más de un isótopo, aunque algunos son inestables. La existencia de isótopos implica que no todos los átomos de un mismo elemento tienen la misma masa (ya que pueden tener más o menos neutrones), motivo por el cual el número atómico es el criterio elegido para su clasificación. Además, tiene otra consecuencia importante:

La masa atómica de un elemento es una media ponderada de las masas atómicas de sus isótopos.

masa-atomica-ponderada

Es decir, al calcular la masa atómica de cada elemento, se ha de tener en cuenta la masa de sus isótopos y la proporción relativa en la que se presentan en la naturaleza. Esta diferencia de masa es especialmente notoria en los tres isótopos del hidrógeno, que reciben el nombre de protio (ningún neutrón), deuterio (un neutrón) y tritio (dos neutrones):

isotopos-hidrogeno

Si tenemos en cuenta que la masa de un protón es prácticamente la misma que la de un neutrón, el deuterio tiene aproximadamente el doble de masa que el protio, y la masa del tritio sería, más o menos, el triple. Sin embargo, como la abundancia natural del protio es del 99’98 % (de cada 10 000 átomos de hidrógeno, 9 998 son de protio), la media ponderada de sus masas atómicas es próxima a la unidad: 1’00794 u.

Iones

En general, la materia es eléctricamente neutra, por lo que el número de electrones de un átomo coincide con el número de protones presentes en su núcleo. Sin embargo, en ocasiones nos encontramos con átomos que presentan carga eléctrica y esto es debido a la pérdida o ganancia de un cierto número electrones:

  • Los átomos que han perdido electrones adquieren carga positiva (tienen más protones que electrones) y se denominan cationes:

formacion-de-cation

  • Los átomos que han ganado electrones adquieren carga negativa (tienen más electrones que protones) y se denominan aniones:

Formacion-de-anion.JPG

Los elementos metálicos tienen tendencia a formar cationes, mientras que los no metálicos suelen dar lugar a aniones. Evidentemente, la variación del número de electrones no afecta al núcleo, por lo que tanto los cationes como los aniones siguen perteneciendo al mismo elemento que el átomo de procedencia (ya que no cambian su número atómico).

La carga eléctrica de un ion se indica con un superíndice a la derecha del símbolo del elemento químico: Na+, Mg2+, Fe3+, N3–, O2–, Cl.

Ejemplo resuelto

ejercicio-resuelto-numero-atomico-masico-neutrones

 

Los modelos atómicos: una evolución histórica

El atomismo griego

La naturaleza atómica de la materia ya fue defendida en la antigua Grecia por Leucipo y Demócrito, en el siglo V a. C. Sin embargo, no fue una idea dominante en la época, y la concepción platónica y aristotélica, de una materia continua e indefinidamente divisible, fue la que se impuso y se perpetuó durante más de dos milenios.

La palabra átomo proviene del latín atŏmus, y esta del griego ἄτομον, átomon, que significa ‘indivisible’, ‘que no se puede cortar’.

leucipo-y-democrito

Leucipo y Demócrito

El modelo atómico de Dalton

No fue hasta el siglo XIX cuando el científico inglés John Dalton, basándose en sus propios estudios y en las experiencias previas de Lavoisier y Proust, entre otros, elaboró el primer modelo atómico (científico) de la materia, considerando que esta estaba formada en última instancia por pequeñísimas partículas indivisibles, carentes de estructura o composición interna.

El modelo atómico de Dalton se basa en los siguientes postulados:

  • La materia está formada por pequeñas partículas esféricas, indivisibles e inmutables, llamadas átomos.
  • Todos los átomos de un mismo elemento son iguales entre sí y diferentes a los de otros elementos.
  • Los elementos se combinan entre sí en proporciones constantes y sencillas para formar compuestos.
  • En los procesos químicos los átomos no se destruyen ni se alteran, simplemente se reordenan formando compuestos distintos.

John Dalton fue el primero en utilizar, en 1803, símbolos para representar los elementos químicos:

Simbolos-elementos-quimicos-Dalton

Símbolos de los elementos propuestos por Dalton en 1803

El modelo atómico de Thomson

A finales del siglo XIX, el físico inglés J. J. Thomson experimentaba con tubos de descarga (tubos de Crookes), consistentes en tubos de vidrio que encerraban un gas a muy baja presión y dos placas metálicas que, al ser conectadas a una fuente de alimentación de alto voltaje, producían una emisión (rayos catódicos) desde la placa negativa (cátodo) a la placa positiva (ánodo). Thomson descubrió que estas emisiones estaban formadas realmente por pequeñas partículas cargadas negativamente, que hoy conocemos como electrones.

experimento rayos catodicos

La desviación de los rayos catódicos al ser sometidos a un campo eléctrico es una prueba de que las partículas que los forman poseen carga negativa.

El descubrimiento del electrón no solo posibilitó la comprensión de la naturaleza eléctrica de la materia, sino que hizo que se tuviera que reconsiderar la indivisibilidad del átomo. Thomson propuso que el átomo está formado por una esfera uniforme cargada positivamente en la que se incrustan los electrones, que aportan la carga negativa necesaria para que el átomo resulte eléctricamente neutro:

modelo-atomico-de-thomson

Modelo del átomo de Thomson

El modelo atómico de Rutherford

Un mayor conocimiento de la estructura atómica fue posible gracias a las experiencias llevadas a cabo por el neozelandés Ernest Rutherford, colega de Thomson, a principios del siglo XX. Lo que hizo fue bombardear una delgada lámina de oro con partículas alfa (núcleos de helio) procedente de una fuente radiactiva (polonio o radio):

Experimento de Rutherford

Lo que Rutherford observó fue que la mayoría de las partículas atravesaban la lámina sin desviarse (o con una desviación mínima), algunas se desviaban de su trayectoria un ángulo considerable y un porcentaje mínimo de ellas rebotaban contra la lámina. Estos resultados le sorprendieron, pues indicaban que ni la materia era tan continua ni los átomos eran tan compactos como se suponía. Sus conclusiones principales fueron:

  • El átomo está en su mayor parte vacío, por lo que la mayoría de las partículas alfa lograban atravesarlo sin obstáculo.
  • La carga positiva del átomo está concentrada en una pequeña región del átomo, por lo que solo las partículas alfa (también cargadas positivamente) que se acercaban lo suficiente se desviaban de su trayectoria y, muy pocas, chocaban contra y rebotaban.

En resumen:

En el modelo atómico de Rutherford (1911), la carga positiva y casi toda la masa del átomo están concentradas en un núcleo central, y a grandes distancias de este se se mueven a gran velocidad los electrones, con carga negativa. 

Rutherford descubrió que la carga positiva del núcleo se debía a la existencia de una nueva partícula, el protón, con una carga idéntica a la del electrón pero de signo contrario y una masa casi dos mil veces mayor. Para que los protones se mantuvieran estables en el interior del núcleo atómico, sugirió la existencia de otra partícula, el neutrón (con una masa similar a la del protón, aunque sin carga eléctrica), que fue descubierta por el físico inglés James Chadwick en 1932.

Modelo-atómico-Rutherford.png

Modelo del átomo de Rutherford

El modelo atómico actual

A pesar de sus aciertos, el átomo descrito por Rutherford tiene un grave inconveniente: es inestable. Según la teoría electromagnética, toda carga en movimiento emite energía en forma de ondas electromagnéticas, por lo que un electrón en órbita alrededor del núcleo perdería energía y caería rápidamente en espiral hasta colapsar con él.

El modelo atómico propuesto por el físico danés Niels Bohr en 1913 resuelve este problema, e incorpora por primera vez conceptos ligados a la mecánica cuántica, aunque sigue siendo una explicación insuficiente. En la actualidad, la naturaleza y el comportamiento del átomo se explican con éxito mediante el modelo mecano-cuántico, uno de los pilares de la física moderna, cuya elaboración supone uno de los grandes logros de la ciencia del siglo XX.

Sustancias puras y mezclas

Los sistemas materiales se pueden clasificar de la siguiente manera:

Clasificacion-Sistemas-Materiales

Sustancias puras

Una sustancia pura es materia que posee la misma composición en todos sus puntos y, por tanto, conserva las mismas propiedades y características en todos ellos. Dentro de las sustancias puras distinguimos:

  • Las sustancias simples, que están formadas por un único elemento, es decir, no pueden descomponerse en otras sustancias más sencillas. Por ejemplo, el hierro, el oxígeno o el sodio.
  • Las sustancias compuestas, formadas por la combinación de elementos que se unen entre sí en compuestos químicos de propiedades y características definidas. Por ejemplo, el agua (combinación de hidrógeno y oxígeno), el amoniaco (combinación de nitrógeno e hidrógeno) o el dióxido de carbono.

Mezclas

Una mezcla es un tipo de materia constituida por dos o más componentes distintos (átomos, moléculas…), que conservan su identidad química. Las mezclas de sustancias pueden ser:

  • Mezclas homogéneas: en las que los componentes que la constituyen son indistinguibles. El aire, las disoluciones líquidas o las aleaciones son mezclas homogéneas.
  • Mezclas heterogéneas: en las que se pueden distinguir los componentes que la forman, incluso a simple vista. Por ejemplo, el granito, la suspensión de polvo en el aire, el zumo de naranja natural o la ensaladilla rusa.
granito

En el granito pueden identificarse a simple vista el cuarzo (rosáceo), la mica (negro) y el feldespato (blanco) que lo forman.

Los componentes de las mezclas se pueden separar por métodos físicos. Las técnicas de separación más habituales son:

  • Para separar los componentes de mezclas homogéneas: la destilación (de líquidos con diferentes puntos de ebullición), la cristalización (de sólidos disueltos en sustancias relativamente volátiles) o la cromatografía.
  • Para separar los componentes de mezclas heterogéneas: la filtración (de un sólido mezclado con un líquido), la decantación (de líquidos de diferentes densidades, o de una mezcla sedimentada de sólido y líquido), la tamización (de partículas sólidas de diferente grosor) o la imantación (que permite separar componentes con propiedades magnéticas).
filtracion

Filtración

Actividad resuelta

Ejercicio-resuelto-sustancias-puras-mezclas

Los cambios de estado: gráficas de calentamiento y enfriamiento

La materia se encuentra habitualmente en tres estados de agregación: el sólido, el líquido y el gaseoso. Una misma sustancia aparece en uno u otro estado en función de las condiciones de presión y temperatura a las que se encuentre sometida, por lo que mediante la variación de estas se puede conseguir la transformación entre dos estados diferentes.

La forma más sencilla, o más evidente, de cambio de estado es la que tiene lugar por modificación de la temperatura, mediante intercambio de calor entre el sistema material y su entorno. Este proceso puede ocurrir en dos sentidos:

  • Por calentamiento: las sustancias sólidas pasan a estado líquido o gaseoso (cambios de estado progresivos).
  • Por enfriamiento, las sustancias gaseosas pasan a estado líquido o sólido (cambios de estado regresivos).

Según la teoría cinético-molecular, al aumentar la temperatura de una sustancia, se produce un incremento de la energía cinética media de sus partículas, por lo que estas adquieren mayor movilidad, venciendo las fuerzas de cohesión que existen en estado sólido y, en menor medida, en estado líquido, hasta llegar a ser despreciables en estado gaseoso. En sentido inverso, al disminuir la temperatura las partículas pierden movilidad y van dominando las interacciones atractivas que conducen a agrupaciones entre ellas y a estados de agregación cada vez más ordenados. Los cambios de estado pueden ocurrir, por tanto, de dos maneras entre cada uno de los estados físicos, denominándose, en cada caso, de la siguiente manera:

cambios_de_estado_de_una_susutancia_TCM.png

  • El cambio de estado sólido a estado líquido se denomina fusión. El proceso inverso se conoce como solidificación.
  • El cambio de estado líquido a estado gaseoso se denomina vaporización. El proceso inverso se llama condensación, aunque también licuación (o licuefacción).
  • El cambio directo entre el estado sólido y el estado gaseoso (sin pasar por el estado líquido) se conoce, en ambos sentidos, como sublimación, distinguiéndose: sublimación progresiva (el salto de sólido a gas) y sublimación regresiva o inversa (o condensación de gas a sólido).

Durante las transiciones la temperatura no varía, ya que todo el intercambio energético está vinculado al paso de un estado a otro. En el caso de la fusión, la temperatura a la que transcurre se denomina punto de fusión (en el que coexisten en equilibrio el sólido y el líquido), que es característico de cada sustancia (o mezcla de sustancias). Para la mayoría de las sustancias, entre las que se encuentra el agua, la temperatura de solidificación (congelación) coincide con la de fusión.

Por su parte, la vaporización puede producirse de dos maneras:

  • Por ebullición, cuando todas las partículas alcanzan la temperatura necesaria para que se produzca el cambio de estado, conocida como punto de ebullición y que, como en la fusión, se mantiene constante durante el cambio de estado. Es lo que ocurre, por ejemplo, cuando calentamos agua hasta que comienza a hervir.
  • Por evaporación, cuando solo una parte de las partículas, generalmente superficiales, son capaces de escapar al estado gaseoso. Este tipo de vaporización tiene lugar a temperaturas inferiores a la de ebullición y es responsable, por ejemplo, de que los charcos se evaporen o se seque la ropa húmeda.

vaporizacion-ebullicion.png

En algunas sustancias, como el yodo o la naftalina, se observa que el paso a estado gaseoso se produce directamente desde el estado sólido, sin pasar por el estado líquido. Esta “evaporación” desde el estado sólido es lo que se conoce como sublimación, y la temperatura a la cual ocurre se denomina punto de sublimación.

Puntos-fusion-ebullicion

Puntos de fusión y ebullición de algunas sustancias comunes

La representación gráfica de la temperatura de una sustancia o sistema con respecto al tiempo conduce a las gráficas de calentamiento o enfriamiento en las que se visualizan perfectamente los cambios de estado y las variaciones de temperatura entre ellos:

Grafica-calentamiento

Gráfica de calentamiento de una sustancia inicialmente sólida que se funde a 17 ºC y entra en ebullición a 115 ºC.

Grafica-enfriamiento

Gráfica de enfriamiento de un gas que condensa a 78 ºC y se congela a -15 ºC.

Cuestión resuelta

Ejercicio-resuelto-cambio-de-estado-cuestión

Vídeo recomendado: experiencias de cambios de estado

Densidad: concepto y medida

Sunset_iceberg_2.jpg

Con toda seguridad habrás comprobado cómo los cubitos de hielo son capaces de flotar en el agua, mientras que si dejamos caer una piedra en un lago se hunde en su interior. ¿A qué se debe este diferente comportamiento? La clave se encuentra en una propiedad específica de la materia denominada densidad (cuyo símbolo es dρ), que se define como el cociente entre la masa y el volumen de un cuerpo:

densidad-concepto

Cualquier cuerpo o sustancia posee una determinada masa y un cierto volumen, pero en sí mismos estos datos no nos aportan ninguna información sobre su naturaleza. Sin embargo, la densidad es un valor invariable, característico de cada cuerpo o sustancia. Así, un determinado volumen de agua no puede tener una masa cualquiera, sino que esta tiene que ser proporcional a su densidad. Evidentemente, a mayor volumen de agua, mayor será su masa, pero la relación que hay entre ambas será siempre la misma. Dado que, en el Sistema Internacional, la masa se mide en kilogramos y el volumen, en metros cúbicos, la unidad correspondiente a la densidad es el kg/m3, aunque es común expresarlas en g/cm3:

Densidad-tabla

En general, la densidad de una sustancia disminuye al aumentar la temperatura, ya que las partículas que la componen adquieren mayor movimilidad y crecen las distancias que las separan, lo que se traduce en un mayor volumen y en una menor densidad. Por razones similares, la densidad cambia bruscamente en los cambios de estados, siendo mayor en estado sólido que en estado líquido, y mucho menor en estado gaseoso, para una misma sustancia. Sin embargo, existen notables excepciones, y la más relevante es la anomalía que se observa en el agua, cuya densidad máxima se consigue en estado líquido a 4 ºC (por lo que la densidad del hielo es menor que la del agua líquida, lo que le permite flotar sobre ella).

Densidad absoluta y densidad media

Cuando nos referimos a sustancias puras (agua, hierro, helio) o mezclas homogéneas de sustancias (aceite, aleaciones, aire) la densidad es la misma para cualquier fragmento o porción que escojamos, por lo que podemos hablar de densidad absoluta. Sin embargo, los materiales heterogéneos, en los que podemos distinguir diferentes componentes (como el granito, en el que se aprecian a simple vista los cristales de cuarzo, mica y feldespato), encontraremos que la densidad puede variar de un fragmento a otro del material, y que el cociente entre su masa y su volumen nos proporciona una densidad media, que no tiene por qué ser constante.

granito

El granito es un material heterogéneo, por lo que el cociente entre su masa y su volumen nos permite calcular su densidad media, y esta puede variar de un fragmento a otro.

Densidad relativa

En ocasiones la densidad de algunos materiales o sustancias se pueden expresar en función de la densidad de otra sustancia que se toma como referencia. Al cociente entre la densidad de una sustancia y la de aquella que se toma como referencia se denomina densidad relativa:

densidad-relativa

  • Para sólidos y líquidos, suele tomarse como referencia la densidad absoluta del agua pura a 4 ºC, que es 1000 kg/m3.
  • Para los gases, la densidad de referencia habitual es la del aire en condiciones noramles (1 atm de presión y 0º C), que es 1’3 kg/m3.

Medida de la densidad

Cuenta la leyenda que el rey Hierón II pidió a Arquímedes de Siracusa (siglo III a.C.) que determinase la autenticidad de su corona, pues dudaba de que el orfebre al que se la había encargado utilizara únicamente oro en su elaboración. El problema era que lo tenía que hacer sin dañar la corona, por lo que determinar la densidad de una pieza tan irregular resultaba tremendamente complicado. Dicen que no paró de darle vueltas hasta que un día, al darse un baño, se dio cuenta de que el nivel del agua subía según iba metiéndose en la bañera. En seguida comprendió que de una manera similar podría hacerlo con la corona, determinando su volumen y, por tanto, su densidad. Embargado por la emoción, salió corriendo desnudo por las calles gritando ¡Eureka!, que significa ¡Lo he encontrado!.

No es seguro que esta historia ocurriera realmente, pero en ella se propone una estrategia sumamente simple para el cálculo de la densidad de un cuerpo sólido de forma irregular, para el cual el cálculo matemático del volumen sería excesivamente complejo o, directamente, imposible. Para llevarlo a cabo en el laboratorio, no necesitaríamos más que una balanza (para determinar la masa del cuerpo), un recipiente graduado (como una probeta) y un líquido (generalmente agua, siempre que esta no disuelva o interaccione con el cuerpo):

densidad.png

  1. En primer lugar se mide la masa del cuerpo con la balanza.
  2. A continuación se mide el volumen de líquido.
  3. Luego se sumerge el cuerpo en el líquido y se calcula su volumen por diferencia de volúmenes.
  4. Finalmente se calcula su densidad, dividiendo la masa entre el volumen.

Aunque este es un método habitual, existen aparatos de medida específicos como el picnómetro, la balanza de Mohr, la balanza hidrostática o el densímetro.

Actividades resueltas

Ejercicios-resueltos-densidad-problemas

Ejercicio-resuelto-densidad-cuestion