Historia de la tabla periódica (I)

El descubrimiento de los primeros elementos químicos

La idea moderna de elemento químico surgió en el siglo XVII, y podemos encontrar un precedente en la obra El químico escéptico (1661), de Robert Boyle, donde se menciona que «ciertos cuerpos primitivos y simples», que no están formados por otros cuerpos, son los que se combinan y componen los «cuerpos mixtos».

Las civilizaciones antiguas ya conocían y empleaban metales como el cobre, el plomo, el oro, la plata, el hierro, el estaño, el mercurio o el zinc, y también algunos no metales como el carbono, el azufre, el arsénico o el antimonio (antiguamente llamados metaloides). Sin embargo, el primer descubrimiento científico de un elemento químico no se produjo hasta 1670, cuando el alquimista Henning Brandt consiguió aislar el fósforo a partir de residuos de orina destilada.

El establecimiento de la química como disciplina científica permitió que durante el siglo XVIII se conocieran el cobalto (G. Brandt; 1730), el platino (A. de Ulloa; 1735), el níquel (A. F. Cronstedt; 1751), el bismuto (C. Geoffroy, 1753), el manganeso (T. Bergman; 1774), el molibdeno (C. W. Scheele; 1781) y el wolframio (T. Bergman; 1783). El desarrollo de la química neumática extendió el campo de estudio también a los gases, lo que condujo al descubrimiento del hidrógeno (H. Cavendish; 1766), el oxígeno (C. W. Scheele (1771) y el nitrógeno (D. Rutherford; 1772).

La clasificación de los elementos de Lavoisier

La culminación de estos estudios llegó de la mano del francés Antoine Lavoisier, considerado el padre de la química moderna, y la publicación de su Tratado elemental de química (1789). Lavoisier afianzó el concepto de elemento químico y elaboró una lista de 33 sustancias simples, que incluía los 23 elementos metálicos y no metálicos ya mencionados (en la imagen). Sin embargo, en ella también incorporaba la luz o el calórico, como entidades consustanciales a todo tipo de materia, y algunas sustancias que hoy sabemos que son compuestos.

Lista-elemento-químicos-Lavoisier.png

Lista de elementos elaborada por Lavoisier

Durante los siguientes años se descubrieron nuevos elementos y, en 1828, ya eran 54 los conocidos con seguridad y se preveía que la lista se iría incrementando con el tiempo. Es por ello que los químicos buscaban la manera de organizar los elementos y  los conocimientos acumulados.

Las tríadas de Döbereiner

En 1829, el alemán J. W. Döbereiner observó que el bromo, descubierto tres años antes, tenía propiedades afines, pero intermedias, a las del cloro y el yodo. Análoga observación había llevado a cabo con otros grupos de tres elementos, como el que forman el calcio, el estroncio y el bario, o el del azufre, el selenio y el teluro. En estas tríadas, hizo notar que el elemento central tenía un peso atómico era, aproximadamente, el promedio de los pesos atómicos de los otros dos elementos (ley de las tríadas). Sin embargo, como los elementos que se podían agrupar en tríadas eran poco numerosos dentro del conjunto de todos los conocidos, las tríadas de Döbereiner no pasaron de ser una curiosidad que se consideró sin interés real.

triadas-de-dobereiner

Tríadas de Döbereiner

El alemán Leopold Gmelin trabajó con el sistema de clasificación de Döbereiner y para 1843 había identificado diez tríadas, además de un grupo con cuatro y otro con cinco elementos relacionados. Posteriormente, en 1857, Jean Baptiste Dumas publicaría una descripción de las relaciones que mantienen varios grupos de metales. Sin embargo, aún no se había vislumbrado el esquema con el que organizar estos grupos de elementos.

El caracol telúrico de Chancourtois

En 1862, el geólogo francés A. Beguyer de Chancourtois identificó la periodicidad de los elementos químicos, e ideó una ingeniosa manera de representarlos. Al disponerlos en espiral sobre un cilindro en orden creciente de sus masas atómicas, encontró que aquellos elementos de propiedades semejantes se alineaban en la misma generatriz. Este diseño se conoce como hélice telúrica, espiral telúrica o caracol telúrico:

caracol-telurico-chancourtois

Las octavas de Newlands

En 1864, el químico inglés John Newlands comprobó que al ordenar los elementos por su masa atómica, las propiedades análogas aparecían recurrentemente en intervalos de ocho, de manera similar a las octavas musicales (por lo que se la conoce como ley de las octavas).

octavas-musicales.png

Un año después, Newlands presentaría su artículo La ley de las octavas y las causas de las relaciones numéricas de los pesos atómicos ante la Royal Society of Chemistry, pero no encontró sino incomprensión, hasta el punto de que, en broma, se le sugería que buscase mejores resultados disponiendo los elementos en orden alfabético. Conviene recordar que por entonces eran muchos los elementos desconocidos, por lo que la ordenación de los elementos mostraba ciertas irregularidades y dejaba de cumplirse a partir del calcio. Además, se le reprochaba que el descubrimiento de nuevos elementos desbarataría por completo la armonía de su propuesta.

octavas-newlands

Octavas de Newlands. En ella, el berilio aparece con el símbolo G, pues antiguamente era conocido como glicinium, e incluye el elemento Di, de nombre didinium, que posteriormente se demostró estar formado por una mezcla de praseodimio y neodimio.

Hacia la tabla periódica actual

Uno de los problemas al que se enfrentaban los químicos de la época era la confusión entre los conceptos de peso atómico, peso molecular y peso equivalente, lo que provocaba agrias polémicas entre atomistas y equivalentistas. Este motivo impulsó al químico August Kekulé a celebrar un congreso que pusiera orden sobre la nomenclatura, la formulación y los pesos atómicos y que tuvo lugar en Karlshure en septiembre de 1860. En el congreso, Stanislao Cannizzaro hizo, basándose en la hipótesis de Avogadro, una apasionada defensa del concepto de peso atómico frente al de equivalente y estableció la importancia de distinguir entre átomos y moléculas. Estas ideas calaron en dos jóvenes asistentes, Julius L. Meyer y Dmitri I. Mendeléyev quienes empezaron a imaginar un orden dentro de los elementos, lo que daría como resultado la primera tabla periódica.

Continuará…

Elementos, isótopos e iones

La primera definición de elemento químico se debe al gran Antoine Laurent de Lavoisier (1743-1794), quien es considerado el padre de la Química moderna (pues la elevó a la categoría de actividad científica fundamentada en la investigación). En su Tratado elemental de química (1789) hace una clasificación de los elementos conocidos (un total de 32, incluyendo la luz y el calórico, la supuesta materia del fuego), entendiendo como tales las sustancias puras que no pueden descomponerse en otras más sencillas.

Unos años después, el científico inglés John Dalton asentó definitivamente la naturaleza atómica de la materia, entendiendo que los átomos de un mismo elemento eran siempre iguales entre sí y distintos a los de otros elementos. A simple vista, las diferencias entre elementos eran obvias: estado físico, color, brillo, olor, sabor… Incluso había algunas pautas para identificarlos por su comportamiento químico, pero ¿qué distinguía a un elemento de otro a nivel atómico?

Con el descubrimiento de las leyes ponderales, se hicieron las primeras clasificaciones de los elementos en función de sus masas atómicas y se comprobó que se podían ordenar de tal manera que formaban grupos de elementos con propiedades análogas. De este modo surgió la tabla periódica de los elementos, que se ha ido perfeccionando y completando con el tiempo. Esto fue posible gracias a una serie de científicos, como Thomson, Rutherford o Chadwick, que, a finales del siglo XIX y principios del siglo XX, descubrieron las tres partículas elementales que constituyen el átomo: el protón y el neutrón, que concentran casi toda la masa del átomo en una pequeña región central llamada núcleo; y el electrón, de masa insignificante (en comparación con la del protón o el neutrón) y en continuo movimiento alrededor del núcleo a gran distancia de él. Según esto, la masa de un átomo se puede considerar que coincide con la de su núcleo y, en consecuencia, es en el núcleo donde radica la diferencia entre átomos, es decir, entre unos elementos y otros.

Número atómico y número másico

Dado que la masa de un átomo es, básicamente, la masa de su núcleo, y este está formado por protones y neutrones, se define:

Número másico: es el número de protones y de neutrones de un átomo.

El número de neutrones puede variar entre átomos de un mismo elemento, por lo que definimos:

Número atómico: es el número de protones de un átomo.

Por tanto, es el número atómico el que caracteriza y diferencia unos átomos de otros:

Los átomos de un mismo elemento poseen el mismo número atómico, es decir, el mismo número de protones.

Se conocen elementos con números atómicos comprendidos entre 1 y 118. El más pequeño es el hidrógeno, con un único protón, mientras que el elemento químico de mayor número atómico que está presente en la naturaleza es el americio, con 95 protones. Los de mayor número atómico han sido obtenidos artificialmente, mediante bombardeo de átomos de menor tamaño con partículas alfa.

Normalmente, el número atómico se simboliza con la letra Z y el número másico con la letra A, representándose con un subíndice y un superíndice, respectivamente, a la izquierda del símbolo químico al que corresponden:

Número-atómico-másico-simbolo-elemento

Isótopos

Hemos dicho que los átomos de un mismo elemento tienen el mismo número atómico (número de protones), pero no tienen por qué tener el mismo número másico (número de protones más neutrones). Por ello, definimos:

Isótopos: átomos de un mismo elemento (con el mismo número atómico) que difieren en el número de neutrones (distinto número másico).

La mayoría de los elementos químicos tienen más de un isótopo, aunque algunos son inestables. La existencia de isótopos implica que no todos los átomos de un mismo elemento tienen la misma masa (ya que pueden tener más o menos neutrones), motivo por el cual el número atómico es el criterio elegido para su clasificación. Además, tiene otra consecuencia importante:

La masa atómica de un elemento es una media ponderada de las masas atómicas de sus isótopos.

masa-atomica-ponderada

Es decir, al calcular la masa atómica de cada elemento, se ha de tener en cuenta la masa de sus isótopos y la proporción relativa en la que se presentan en la naturaleza. Esta diferencia de masa es especialmente notoria en los tres isótopos del hidrógeno, que reciben el nombre de protio (ningún neutrón), deuterio (un neutrón) y tritio (dos neutrones):

isotopos-hidrogeno

Si tenemos en cuenta que la masa de un protón es prácticamente la misma que la de un neutrón, el deuterio tiene aproximadamente el doble de masa que el protio, y la masa del tritio sería, más o menos, el triple. Sin embargo, como la abundancia natural del protio es del 99’98 % (de cada 10 000 átomos de hidrógeno, 9 998 son de protio), la media ponderada de sus masas atómicas es próxima a la unidad: 1’00794 u.

Iones

En general, la materia es eléctricamente neutra, por lo que el número de electrones de un átomo coincide con el número de protones presentes en su núcleo. Sin embargo, en ocasiones nos encontramos con átomos que presentan carga eléctrica y esto es debido a la pérdida o ganancia de un cierto número electrones:

  • Los átomos que han perdido electrones adquieren carga positiva (tienen más protones que electrones) y se denominan cationes:

formacion-de-cation

  • Los átomos que han ganado electrones adquieren carga negativa (tienen más electrones que protones) y se denominan aniones:

Formacion-de-anion.JPG

Los elementos metálicos tienen tendencia a formar cationes, mientras que los no metálicos suelen dar lugar a aniones. Evidentemente, la variación del número de electrones no afecta al núcleo, por lo que tanto los cationes como los aniones siguen perteneciendo al mismo elemento que el átomo de procedencia (ya que no cambian su número atómico).

La carga eléctrica de un ion se indica con un superíndice a la derecha del símbolo del elemento químico: Na+, Mg2+, Fe3+, N3–, O2–, Cl.

Ejemplo resuelto

ejercicio-resuelto-numero-atomico-masico-neutrones